Business reactions to the new Circular Economy Package – To what extent does it address the key challenges of businesses in the transition to a resource efficient circular economy?
The common goals of the circular economy: Environmental protection, securing of raw materials, economic benefit, and growth

“Our planet and our economy cannot survive if we continue with the ‘take, make, use and throw away’ approach. We need to retain precious resources and exploit the potential economic value within them. The circular economy is about reducing waste and protecting the environment, but it is also about creating economic opportunities and competitive advantages.”

First Vice-President Frans Timmermans

“These proposals give a positive signal to those waiting to invest in the circular economy. Today we are saying that Europe is the best place to grow a sustainable and environmentally-friendly business. The job creation potential of the circular economy is huge, and the demand for better and more efficient products and services is booming.”

Vice-President Jyrki Katainen

Source: EU Commission, 2 December 2015
Which means in business terms:

effectiveness + efficiency
Increasing **resource efficiency** (see 7th EAP)

- Full implementation of the **waste hierarchy** in all Member States
- Reducing **per-capita waste arisings**
- Combating unnecessary **food waste**
- Ensuring high-quality **recycling** as a major and reliable source of raw materials:
 - Raising the targets for preparing for re-use and **recycling of municipal waste to 65% by 2030**
 - Raising the targets for the re-use and recycling of packaging waste
 - Limiting energy recovery to non-recyclable waste
 - **Limiting landfilling to 10% by 2030**
 - Introduction of an early warning mechanism to monitor compliance with targets
- Special rules for Member States facing the biggest implementation challenges;
- Aligning **definitions and calculation methods**, simplifying reporting obligations
- Support cooperation between Member States
- Laying down **general requirements** for ERP schemes
- Encouraging the use of economic instruments

EU Commission’s proposal COM(2015)595 et al. still addresses only 7–10% of total waste arisings

To be amended:
- Packaging Directive 94/62/EC
- Landfill Directive 1999/31/EC
- WEEE Directive 2012/91/EU
- Batteries Directive 2006/66/EC

Municipal waste

Industrial, commercial, and mining waste

BAT reference documents (BAT: Best Available Technology) for “extremely diversified” industrial, commercial, and mining waste
Distorted starting point: Recycling of municipal waste is at a mere 32 % on average in the Member States

- The recycling target for municipal waste as specified in the Waste Framework Directive (WFD) is set at 50 % by 2020 for all Member States.
- The Commission’s data suggest that the recycling rate was 42 % on average in the EU-28 in 2013.
- This value is distorted by Germany’s extraordinarily high recycling rate and high waste arisings.
- The actual reference value for the Member States’ individual targets is markedly lower at 32 % on average.
- It is unlikely that all Member States will be able to reach the WFD target of 50 % by 2020.¹)
- It is even more unlikely that Member States with low recycling rates will be able to reach the circular economy goal of 65 % by 2030.
- Large differences between national recycling rates create an unwanted differential and an incentive for (illegal) waste exports.
- Therefore, eliminating the differences between recycling rates across the EU should have top priority, with Member States with low recycling rates achieving first the EU average and then the WFD target.

¹) Estonia, Greece, Croatia, Latvia, Malta, Romania and Slovakia may obtain five additional years for the attainment of the 2025 and 2030 targets.

Source: EUROSTAT (2015)
The important difference between maximum and optimum recycling targets

Recycling rates close to 100% lead to overshooting expenses (e.g. costs, energy; fig. A) and result in **declining environmental benefits** (fig. B) due to high energy and resource demand, pseudo-recycling, etc.

Recycling targets A and B are significantly different but produce the same environmental benefit (fig. B).

The expenses to realise target B are much higher than for A (B'>>A').

The **optimal area** for a political recycling target is close to the left of the optimum (↔).

The **optimal recycling target** is a function of
- the type of waste (fig. C)
- the state of the art of the recycling technology
- the state of the art of the primary technology
- commodity prices

Therefore:
- Optimum recycling rates are – unfortunately - moving targets, influenced by varying factors.
- It is important to carefully determine the optimum recycling target (Opt.; fig. B) for each type of waste.
- The political recycling targets can then be set close to the left of the optimum target (↔), thereby **avoiding ecologically and economically suboptimal results**.
- The recycling targets set have to be **routinely checked**.

1) This is a scientifically complex task. Laner and Rechberger show how to approach it in their study on cooling appliances (LANER, D. AND H. RECHBERGER, Treatment of cooling appliances: Interrelations between environmental protection, resource conservation, and recovery rates. Resources, Conservation and Recycling, 2007, vol. 52, no. 1, 136–155).
The shift from landfilling to recycling and thermal recovery takes time, even in wealthy countries

- The share of municipal waste going to landfill varies widely across Member States.
 - In 6 Member States, it is less than 3%.
 - In 18 Member States, it is more than 50% (and in some cases even > 90%).
 - In Austria, it took 20 years amid favourable economic conditions to reduce the share of municipal waste going to landfill from more than 60% to less than 1%.

- Landfilling will continue to be necessary as a means of removing pollutants from material cycles.
- Landfills offer a potential for later use of secondary raw materials and substitute fuels (landfill mining).

Sources: UBA (2012), POMBERGER et al. (2015)

<table>
<thead>
<tr>
<th>Production</th>
<th>Consumption</th>
<th>Waste management</th>
<th>Markets for secondary raw materials</th>
<th>Sectorial action</th>
<th>Innovation and investments</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Material efficiency</td>
<td>- Fitness check of legislation</td>
<td>- Improved cooperation / better implementation of EU waste legislation</td>
<td>- Revised fertilisers regulation</td>
<td>- Construction and demolition</td>
<td>- Pilot project to address possible regulatory obstacles for innovators</td>
</tr>
<tr>
<td>- Regulation on TVs and displays</td>
<td>- Repair information</td>
<td>- Combat illicit shipment of ELV</td>
<td>- Minimum requirements for reused water</td>
<td>- Food waste:</td>
<td>- Encourage applications for funding under EFSI</td>
</tr>
<tr>
<td>- Implementation of CEP and BAT</td>
<td>- REFIT of Ecolabel</td>
<td>- Enforcement of revised Waste Shipment regulation</td>
<td>- Safe and cost-effective water reuse</td>
<td>- Voluntary recycling protocol</td>
<td>- Cohesion Policy funds for the circular economy</td>
</tr>
<tr>
<td>- Best practices for mining waste</td>
<td>- Independent testing programme on planned obsolescence</td>
<td>- Industry-led voluntary certification of treatment facilities for key waste/ recylcate streams</td>
<td>- Inclusion of best practices in relevant BREFs</td>
<td>- Environmental performance of buildings</td>
<td>- Strengthen innovation by smart specialization</td>
</tr>
<tr>
<td>- Advanced manufacturing technologies for SME</td>
<td>- Evaluation of Product Environmental Footprint (PEP)</td>
<td>- Initiative on waste to energy in the framework of the Energy Union</td>
<td>- Support to innovation (through EIP and Horizon 2020) and investments</td>
<td>- Biomass and bio-based materials</td>
<td>- Possible platform together with EIB and national banks</td>
</tr>
<tr>
<td>- EMAS and environmental technology verification</td>
<td>- Green procurement: Integration of CEP, training schemes, EU funds</td>
<td>- Dissemination of good practices in waste collection systems</td>
<td>- Interface between chemicals, products and waste legislation</td>
<td>- Critical raw materials</td>
<td>- Stakeholders involvement through existing fora in key sectors</td>
</tr>
<tr>
<td>- Knowledge base for substitution of hazardous substances</td>
<td></td>
<td></td>
<td>- Facilitate waste shipment across the EU, including electronic data exchange</td>
<td>- Exchange of information between manufacturers and recyclers on electronic products</td>
<td>- Public-private partnerships, cooperation platforms, support to voluntary business approaches, and exchanges of best practices</td>
</tr>
</tbody>
</table>

Development of a monitoring framework
The greatest potential of secondary raw materials is not municipal waste but anthropogenic stocks (buildings, infrastructure) as well as industrial and mining waste.

- Municipal waste is often at the centre of political discussion, but there is usually very little room for improvement in its use.
- Studies show that the greatest potential of secondary raw materials can be found elsewhere, but because the materials are still being used, they are not even considered in waste management.
- These potentials are not visible in waste management data. Anthropogenic stocks must be included in the data base.
- Setting recycling rates as high as 90% in some areas (e.g. packaging) but neglecting other promising areas altogether is simply not efficient.
The annual increase in anthropogenic stocks is markedly higher than annual waste arisings: A constantly growing potential for recycling and resource recovery

- At approx. 10 tonnes per capita, the annual increase in anthropogenic stocks is markedly higher than annual waste arisings of around 5 tonnes per capita.
- So far, the proposed amendments of EU directives in the CEP address only municipal waste which makes up only 7–10% of total waste.
- Anthropogenic stocks are estimated at 400 tonnes per capita, with the bulk still in use.
- This is the most relevant and constantly growing potential for recycling and resource recovery.
- At present, the data base we have on this future potential of secondary raw materials is still fragmentary: sources, stocks, quality, uncertainty, pollutants as well as technologies for, and cost of, retrieval.
- It needs to be improved: Taking far-reaching economic and environmental policy decisions with an insufficient data basis would be speculative and not in line with the CEP objectives.

Sources: SCHARFF (2015)
The strategic portfolio of the CEP must be evidence based: Raw material needs – potential – efficiency – effectiveness

- A **systematic analysis** of future raw material needs and all relevant secondary raw material sources/potentials is needed so we can achieve the goals of the circular economy (environmental protection, securing of raw materials, economic benefit and growth) in an effective and efficient manner.

- The EU Commission’s survey of **critical raw materials** provides an excellent starting point.

- A comprehensive **knowledge base** on this topic – which is rather sketchy in most Member States and therefore also in the EU as a whole – must be created using material flow analysis.

- The **strategic portfolio on raw material sources and demand** allows us to
 - prioritise by the economy’s medium-term **raw material needs** as well as the **future raw material potentials** of individual waste streams and anthropogenic stocks over time
 - evaluate the **data available** and **uncertainty**
 - consider **economic benefits**
 - consider the **relevance of pollutants, energy and climate protection aspects**
 - evaluate **dissipative loss**
 - develop **sector-specific targets and measures**, based on **scientific evidence**

Source: SCHARFF (2015)
How can we achieve the common goals of the circular economy - environmental protection, securing of raw materials, economic benefit, and growth - in an effective and efficient manner?

(1) Resource management instead of focusing on municipal waste: bringing the Action Plan to life
(2) Get to know our starting point: harmonization of definitions, statistics, and calculation methods
(3) Harmonising recycling levels between Member States instead of isolated increase in quotas
(4) Optimum instead of maximum recycling targets, based on cost-benefit analysis
(5) Binding minimum requirements for EPR schemes

(6) Modelling of the future raw material demand in terms of quantity and quality
(7) Systematic exploration of anthropogenic resource stocks in goods, buildings and infrastructure
(8) Prioritization of materials and (primary and secondary) sources
(9) Appropriate policies and instruments to support holistic resource efficiency.
(10) Evidence-based approach instead of insufficient data basis
Thank you for your kind attention.

“The EU Commission’s new Circular Economy Package of December 2015 is a big step forward.

Still, a systematic analysis of our future raw material needs and all relevant secondary raw material sources is needed so we can achieve the common goals of the circular economy in an effective and efficient manner, based on scientific evidence.

Taking far-reaching economic and environmental policy decisions with an insufficient data basis would be speculative and not in line with the CEP objectives.”

CEC4Europe, December 2015